Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites.
نویسندگان
چکیده
The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic-inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that S = 1/2 and J = 1/2 Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices.
منابع مشابه
Ferroelectric solar cells based on inorganic–organic hybrid perovskites
Ferroelectric solar cells based on ferroelectric oxides have attracted significant attention owing to many unique advantages, such as the switchable photocurrent and photovoltage, and the above bandgap open circuit voltages. However, the small photocurrent densities of the typical ferroelectric solar cells greatly limit their photovoltaic performance. In this report, we experimentally revealed ...
متن کاملGiant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies
Two-dimensional (2D) layered hybrid organic-inorganic halide perovskite semiconductors form natural "multiple quantum wells" that have strong spin-orbit coupling due to the heavy elements in their building blocks. This may lead to "Rashba splitting" close to the extrema in the electron bands. We have used a plethora of ultrafast transient, nonlinear optical spectroscopies and theoretical calcul...
متن کاملFerroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites.
Organometal halide perovskites have been intensely studied in the past 5 years, inspired by their certified high photovoltaic power conversion efficiency. Some of these materials are room-temperature ferroelectrics. The presence of switchable ferroelectric domains in methylammonium lead triiodide, CH3NH3PbI3, has recently been observed via piezoresponse force microscopy. Here, we focus on the s...
متن کاملRashba Spin−Orbit Coupling Enhanced Carrier Lifetime in CH3NH3PbI3
Organometal halide perovskites are promising solar-cell materials for next-generation photovoltaic applications. The long carrier lifetime and diffusion length of these materials make them very attractive for use in light absorbers and carrier transporters. While these aspects of organometal halide perovskites have attracted the most attention, the consequences of the Rashba effect, driven by s...
متن کاملRashba Spin-Orbit Coupling Enhanced Carrier Lifetime in CH₃NH₃PbI₃.
Organometal halide perovskites are promising solar-cell materials for next-generation photovoltaic applications. The long carrier lifetime and diffusion length of these materials make them very attractive for use in light absorbers and carrier transporters. While these aspects of organometal halide perovskites have attracted the most attention, the consequences of the Rashba effect, driven by s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 19 شماره
صفحات -
تاریخ انتشار 2014